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Abstract 

An urban air temperature model is presented using the enterprise GOES-16 

land surface temperature product. The model is constructed by fitting the 

difference between ground-truth air temperature data against satellite LST 

using a Gaussian function. A time-match algorithm aligns the ground and 

satellite measurements within 5-minutes of one another, and the resulting 

matched values are compared over ten months to investigate their correla-

tion. Land cover, latitude, longitude, local time, and elevation are input 

to a regressive neural network to fit each unique GOES-16 pixel according 

to ground-based properties. Over 150 ground stations and satellite pixels 

throughout the continental U.S. are used near urban areas to construct the 

diurnal Gaussian relationship and approximate air temperature. Statistics 

from a five month validation period generates an RMSE of 2.6 K, a bias of 

0.8 K, and R2 of 0.86, which are in strong competition with other studies at 

lower resolution, less geographic integration, and less temporal resolvability. 

The algorithm also produced strong spatial correlations with a high resolu-
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tion numerical model, resulting in a mean RMSE value of 2.1 K for nearly 

7,000 pixels. The overall presentation of this model aims to simplify the cal-

culation of air temperature from satellite LST and create a successful model 

that performs well in heterogeneous environments. The improvement of ur-

ban air temperature calculations will also result in improved satellite land 

surface products such as relative humidity and heat index. 

Keywords: Air Temperature, GOES-16, Neural Network, Regression, LST, 

Air Temperature Model, Satellite Remote Sensing 

1 1. Introduction and Background 

Spatial air temperature fluctuations can span 7 - 9 K in urban areas where 

land cover is highly heterogeneous (Eliasson and Svensson, 2003; Yan et al., 

2014b). As a result, low-resolution forecasts and ground station networks 

can misrepresent air temperature distributions in regions where micro-scale 

variations are significant (Muller et al., 2013; Yan et al., 2014a). Moreover, 

fine-scale urban weather models require large computational resources or 

lengthy run times, neither of which are ideal in extreme weather scenarios 

(Chen et al., 2011; Mauree et al., 2018). These shortcomings reinforce the 

need for higher temporal resolution remote sensing tools for weather and pub-

lic health applications in cities, where the majority of humans live (Kadhim 

et al., 2016; United Nations, 2014). 

In recent years, weather and climate research has refocused its efforts 

on understanding the impacts of urbanization (Kloog et al., 2014; Krishnan 

et al., 2015; Li et al., 2018b; Pichierri et al., 2012). Much of the progress 

centers on single-city or regional analyses, which do not fully uncover the 
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17 influence of urbanization on variables such as temperature and humidity. 

For the research that has been conducted on country-wide or continental 

scales, the exploration of temperature variability, as an example, is often 

limited to daily averages or daily maxima and minima rather than complete 

diurnal profiles (Good, 2015; Ho et al., 2014; Li et al., 2018a; Zhu et al., 2017). 

The lack of quality temporal and spatial data prevents proper algorithmic 

validation, which often happens when dealing with MODIS and Landsat, 

which are limited to two data points per day and a single point every 16 

days, respectively (Cook et al., 2014; Wan, 2015). 

These limitations were undoubtedly taken into account when develop-

ing the latest Geostationary Operational Environmental Satellite (GOES), 

GOES-16, which boasts 5-minute scan intervals and 2-km spatial granularity 

(Yu et al., 2016). With its high temporal resolution, GOES-16 is already 

being utilized for testing and development of ready-to-use products like sea 

surface temperature (Castro et al., 2018; Nardelli et al., 2015; Petrenko et al., 

2011) and aerosol estimates (Hoff et al., 2014). However, other important 

near-surface measures like air temperature and humidity remain mostly un-

explored, despite their correlation to debilitating urban heat island (UHI) 

effects (Jin, 2012). And since UHI has been well-documented as a catalyst 

for increased death tolls due to extreme heat (Tan et al., 2010; Zhao et al., 

2014), it is the driving force behind the need for an accurate and robust air 

temperature algorithm. 

Beyond applications with GOES-16, numerous studies have developed 

near-surface air temperature, Tair, algorithms built around remote sensing 

tools (Benali et al., 2012; Nieto et al., 2011; Sun et al., 2005). For the abun-
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Figure 1: Ground station distribution atop the National Land Cover Database (NLCD) 

in the continental United States. Each group of points is centered around an urban area 

where each pointfalls within 50-km of the center of the corresponding city. The NLCD 

land cover classes, ground station elevation and latitude and longitude will be used as 

inputs to the air temperature algorithm. 

42 dance of studies available, many are urban-specific and employ both statis-

tical and physical methodologies (Bechtel et al., 2017; Cristóbal et al., 2008; 

Hu et al., 2015; Schuch et al., 2017; Tsin et al., 2016). And while a majority 

of the analyses use linear and non-linear regression (Fabiola Flores and Lillo, 

2010; Florio et al., 2004; Fung et al., 2009; Golkar et al., 2018; Janatian et al., 

2017), other more contemporary techniques like kriging and machine learning 

have been validated and tested for urban sites (Jang et al., 2004; Mao et al., 
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49 2008; Marzban et al., 2018; Szymanowski et al., 2013). Many of the studies 

also incorporate multiple variables such as the normalized difference vegeta-

tion index (NDVI), land cover properties, total precipitable water (TPW), 

solar zenith angle, etc. to increase the correlation between satellite observa-

tions and ground processes (Hengl et al., 2012; Hu and Brunsell, 2015). 

Following a thorough review of the relevant studies above (14 in total), 

ranges of root mean square error (RMSE) and mean absolute error (MAE) 

estimates have been established for benchmarking the success of an accurate 

urban air temperature model (Chai and Draxler, 2014). The range of ob-

served RMSE values spans 2-3K on average, and the average range of MAE 

is slightly smaller with 1.8-2.8K. For each city used in this study, the average 

diurnal air temperature range is 14K, establishing an expected daily error 

of 13% - 21%. The lower limits are treated as the performance metrics for 

the algorithm developed in this study. And while no comprehensive satellite-

derived Tair performance metric exists - the average ranges can establish 

bounds for a new algorithm derived using the GOES-16 satellite. 

In this study, several new techniques correlating land surface temperature 

(LST) and air temperature are introduced. A novel, Gaussian, diurnal fit 

between LST and Tair is proposed. And while others have applied diurnal fits 

to LST with sine and spline curves, this is the first to do so with a Gaussian 

function (Gholamnia et al., 2017; Stisen et al., 2007). Furthermore, to expand 

the study to a country-wide scale, a neural network is invoked to expose the 

relationship between complex terrain, LST, and Tair. Gaussian constants are 

identified for each city by incorporating the National Land Cover Database 

(NLCD), geographic coordinates, elevation, and time of day into the neural 
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74 network. The goal is to decouple geography and urbanization from LST to 

more accurately predict air temperature (Bechtel et al., 2014; Rendón et al., 

2014; Zhang et al., 2011a). 

In the next section, methods for acquiring data will be discussed us-

ing three resources: the GOES-16 satellite, the Automated Surface Observ-

ing System (ASOS), and the numerical Weather Research and Forecasting 

(WRF) model. The following section describes in detail the methodology 

associated with correlating LST to Tair and utilizing local and land cover 

properties for incorporation into the neural network. Then, the results will 

be introduced with training and independence tests between the satellite al-

gorithm, ground observations, and numerical model. Lastly, a discussion and 

concluding section will help clarify whether the following research goals were 

attained: 

1. Develop an air temperature model that can recreate diurnal tempera-

ture profiles in urban areas using GOES-16 Land Surface Temperature 

(LST) 

2. Ensure geographic universality for cities across the U.S. by employing 

the National Land Cover Database (NLCD) 

3. Compare the algorithm to a state-of-the-art numerical urban climate 

model 

Part of the concluding section will also discuss the future of this work and 

potential urban applications. With the goals laid out above, a satellite-

derived air temperature product will help bridge the gap between the sparse 

ground-based micro-networks, and large-scale weather models, which will 
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98 improve upon the air temperature models currently in the literature, and 

create a product that can be used in all cities. 99 

100 2. Data 

2.1. Ground Stations 

The Automated Surface Observing System (ASOS) was used to ground-

truth Tair data for training and validation of the LST algorithm. The Iowa 

Environmental Mesonet (IEM) houses a complete historic database of 1-hour 

ASOS data, making it easy to download and use air temperature data for 

comparison. ASOS also gives sky conditions for each station, meaning clear-

sky days are easy to identify for accurate correlation between ground data 

and corresponding clear GOES-16 data. 

Ground stations were selected based on a 50-km radius drawn from the 

center of each city (based on the city’s shapefile boundary). In total, 206 

ASOS stations from 26 cities across the continental United States were used 

to establish geographic coordinates and identify nearby satellite pixels. Fig-

ure 1 shows the distribution of ground stations across the continental United 

States. The ten most populated cities were selected first, followed by 16 

other cities with varying geography and elevation. The stations differed in 

latitude, longitude, elevation, land cover, and population. 

The land cover-specific properties for each satellite pixel were classified 

using the NLCD, while a digital elevation model and geographic coordinates 

were selected as point data from each ground station. The model, therefore, 

relies heavily on the land cover distribution within each satellite pixel rather 

than ground station point. This was done with the intention of capturing 
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122 land cover effects on the 2km satellite pixel that may not affect the ground 

station. These properties were recorded with the intention of detrending 

the relationship between satellite LST and ground air temperature using a 

diurnal regressive neural network. 

The ASOS were recorded for ten months: five months dedicated to train-

ing and five months dedicated to validation. The specific periods dedicated 

were: January 1, 2018 - May 31, 2018 for the training, and July 1, 2018 -

November 30, 2018 for the validation. June 2018 data were skipped due to 

issues in GOES-16 data. Each station was required to have at least three 

points per hour for the training and validation periods, reducing the total 

number of stations to 162 for the complete analysis. 

2.2. National Land Cover Database (NLCD) 

The NLCD 2011 was used to characterize each GOES-16 satellite pixel 

into 16 land cover classes (NLCD contains 20 classes in total, but four are 

Alaska-specific) (Wickham et al., 2014). The land cover classes are weighted 

as percentages for each satellite pixel such that each pixel carries an array of 

ground properties, and since the NLCD has a resolution of 30-m and GOES-

16 has a resolution of 2-km, we have over 4000 values that are weighted 

for each satellite pixel. This was done with the intention of expanding the 

database used by the neural network, which proves essential for increased 

performance from the air temperature model. 

2.3. GOES-16 Satellite 

The GOES-16 Enterprise Land Surface Temperature (LST) product is de-

livered at 5-minute intervals, allowing high temporal resolution comparison 
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146 against ground-truth air temperature. The LST is calculated using IR bands 

14 (11.2 µm) and 15 (12.3 µm), and a daily split-window channel emissivity 

developed by the Land Surface Temperature Algorithm Working Group at 

NOAA. The enterprise LST product differs from the official baseline LST 

in temporal resolution (5-min vs 1-hour). The algorithm is being developed 

for multiple sensors, the first being the Visible Infrared Imaging Radiome-

ter Suite (VIIRS), and will be publicly available on the GOES-16 Advanced 

Baseline Imager (ABI) in the future (Yu et al., 2017). Currently, the imple-

mentation into the GOES-16 satellite is only available to our team. 

The enterprise algorithm narrows the temporal comparison window be-

tween satellite LST and ground air temperature down to 2.5 minutes (com-

pared to the usual 30 minutes). The LST product also has a spatial resolution 

of 2-km, meaning that most of the ground stations were delegated a unique 

satellite pixel for testing and validation of the algorithm. The GOES-16 

product is designed to have an accuracy below 2.5 K, however, the accuracy 

and precision will be essential for statistical prediction of the air temperature 

algorithm development. For the case study of VIIRS - errors spanned 0.3 K 

- 0.9 K, which indicates the absolute minimum accuracy of the potential air 

temperature algorithm. 

2.4. Urbanized Weather Research and Forecasting Model 

The Weather Research and Forecasting (WRF version 3.9.9.1) model 

(Skamarock and Coauthors, 2008) initialized with the North American Mesoscale 

(NAM) forecast was run from June 14 - Jun 16, 2018. The model config-

uration utilizes three domains centered over New York City with domain 

resolutions of 9-km (120x120), 3-km (121x121), and 1-km (85x82). There 
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171 are 51 vertical levels, with the first level at 10-m and a total of 30 levels 

below 1000-m intended to resolve the atmospheric boundary layer. 

For the radiation schemes, the Dudhia scheme (Dudhia, 1989) is used for 

shortwave, and the Rapid Radiative Transfer Model is used for the longwave 

(Mlawer et al., 1997). Only the two coarser domains run the Kain-Fritsch 

cumulus parameterization (Kain, 2004), and only the 1-km domain uses mi-

crophysics, for which the WRF Single-moment 6-class scheme was selected. 

For the land surface model, the NOAH scheme was used (Tewari et al., 

2016). The Mellor-Yamada-Janjic and the Eta Similarity schemes (Janjić, 

1994) were used for the boundary layer and surface layer schemes, respec-

tively. 

The large number of levels in the boundary-layer helps to better represent 

the building-atmosphere interaction within a multi-layer urban canopy frame-

work developed by (Martilli et al., 2002). The coupled Building Environment 

Parameterization (BEP) and Building Energy Model (BEM) (Salamanca and 

Martilli, 2009) parameterize the urban surface exchanges. Additionally, a 

cooling tower was added to the BEM parameterization to account for the 

latent heat released from buildings (Gutierrez et al., 2015). For the urban 

grids in New York City, the Primary Land Use Tax Lot Output (PLUTO), 

was used to define the urban morphology parameters of building area frac-

tion, building surface area-to-height ratio, and building heights according to 

(Gutiérrez et al., 2015). The PLUTO data has been aggregated from its 

tax-lot based resolution to 1-km aggregates for the fine resolution domain. 

Accounting for the mechanical and thermal effects of buildings has also re-

sulted in more accurate estimates of urban temperature and winds (Gutiérrez 
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196 et al., 2015). 

197 3. Algorithms and Data Training

3.1. Relationship Between LST and Air Temperature 

The relationship between satellite LST and 2-m air temperature has been 

observed and quantified in several remote sensing and environmental studies 

(Gallo et al., 2011; Mutiibwa et al., 2015; Shen and G Leptoukh, 2011). For 

the current analysis, a robust correlation between the 162 ground stations 

and their corresponding nearby LST value is established using the GOES-16 

satellite. The five-month averaged training profiles (Jan - May, 2018) for 

each of the 162 stations is shown in Fig. 2. These difference plots indicate a 

clear diurnal profile, which was crucial for establishing a general relationship 

between ground and satellite data. 

A Gaussian function was chosen to fit the profiles in Fig. 2 and resulted 

in the best overall performance for all 162 stations. The overall error in the 

averaged diurnal plots indicate a minimum absolute error for the algorithm of 

1.65 K. This value marks the minimum achievable error between our satellite 

air temperature algorithm and the ground station true air temperature. And 

since this value is below almost every study in the literature, a decision was 

made to continue with this method of analysis under the hypothesis that the 

application has the potential to outperform other models. 

3.2. Diurnal Gaussian Fit 

The Gaussian fit was chosen based on its similarity to the profile observed 

in the diurnal difference between air temperature and satellite LST. It is also 
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Figure 2: Hourly-averaged difference between ground station air temperature and the 

nearest GOES-16 LST pixel. The hourly averages have been computed for five months of 

training data, which includes 162 stations across the continental U.S.A. in 26 cities. The 

mean absolute error for the averages is 1.65K, indicating the lower limit on the possible 

performance for the diurnal model. 

219 a novel choice, as many choose either sinusoidal, linear, or spline fits when 

correlating the two measurements (Zhou et al., 2013). Since the Gaussian fit 

was chosen over the other methods, it also requires a total of four constants 

as part of its input. In our case, we use the satellite LST and time-of-day 

(UTC) as input variables, which leads to our final modeling equation: 

2 (t−tp)

Tair = TLST + y0 − A0e 2 2σ (1) 

The four parameters, y0, A0, tp, and σ are all found using properties of 

the GOES-16 pixel and air temperature elevation (the ground station in 
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226 this case). Each of the parameters in the Gaussian fit can be thought of as 

different warpings due to station and geographic location. TLST is the GOES-

16 land surface temperature at the nearest pixel to the ground station (within 

5-minutes from the ground station), t is the time-of-day input with units of 

hours, tp is a time-of-day peak shift parameter with units of hours, σ is a 

Gaussian width parameter with units of hours, y0 is a shift parameterwith 

units of Kelvin, and A0 is an amplitude parameter with units of Kelvin. 

The Gaussian was fitted using a method similar to that mentioned in 

(Guo, 2011) and (Bonham-Carter, 1988), where the exponential function is 

used to maximize the correlation between the Gaussian function and the 

diurnal difference between LST and Tair. Using a non-linear least-squares 

method, each ground station produced a series of parameters from each fit, 

which were then input to a database consisting of four parameters for each of 

the 162 ground station points. This array of 162 by 4 will later be used in the 

regressive neural network to find a relationship between the land cover, lati-

tude, longitude, and elevation and each of the four constants in the Gaussian 

fit. 

3.3. Regressive Neural Network 

A regressive neural network was used to identify and weight the influence 

of land cover, elevation, latitude, and longitude such that unique expres-

sions can be established for all four Gaussian constants based on the local 

landscape (Mas and Flores, 2008). The neural network is capable of loop-

ing through each of the 19 local parameters (16 NLCD classes, elevation, 

latitude, longitude) and quantifying the dependence of each on the Gaus-

sian constants. Below is an implementation of the coefficients on each local 
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Figure 3: Flow diagram for calculating air temperature from GOES-16 land surface tem-

perature (LST) using a diurnal Gaussian model and a regressive neural network. 

251 parameter: 

��� NX=18 
y0, A0, tp, σ � = C� j,kpi,j,k + Dj,k (2) 

j k=0 

where j is the index of the Gaussian parameter (0 is y0, 1 is A0, 2 is tp, and 

3 is σ). The i indicates a specific station, Cj,k, Dj,k represent the universal 

constants for the model which are looped over a specific Gaussian parameter 

and pixel-specific index (k), and pi,j,k signifies which value to use based on 

index of Gaussian parameter, station, and pixel-specific index. 
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257 4. Results 

4.1. Air Temperature Model Performance Against Ground Stations 

For testing of the regressive neural network performance, 162 different 

GOES-16 pixels in 26 cities were used to create a database containing coeffi-

cients for each respective diurnal Gaussian curve. The database was used to 

train the regressive neural network which established relationships between 

satellite land surface temperature (LST) and ground station air tempera-

ture (Tair). The study trained over five months (January 1, 2018 - May 

31, 2018) of data, with the ground station acting as the latitude and lon-

gitude location and the nearest GOES-16 pixel as the comparison point. 

Four statistical variables were calculated: coefficient of determination (R2), 

root-mean-square error (RMSE), mean-absolute error (MAE), and mean bias 

(Bias). The statistical measures are defined and used as follows: 

P 
(

R2 T − T )2 

= 1 − Pi  i,model air
(3)

i (T
2

i,air − Tair)  

vuu XN t 1 
RMSE = (T − T )2 (4) 

N i,model i,air

i=1 

1 XN 

MAE = |T − T | (5)
N i,model i,air

i=1 

1 XN 

Bias = (Ti,model − Ti,air) (6)
N 

i=1 

For each station, the four statistical measures were calculated as general 

performance metrics. Overall, for 162 stations, the statistical outcomes were 
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Table 1: Average model performance statistics against ground station data for the training 

period (Jan. - May) and validation period (July - Nov.) 

Dates (2018)  Stations # Points  2 R RMSE MAE Bias 

Jan. 1 - May 31 162 1284 0.90 2.4 1.8 0.3 

July 1 - Nov. 30 156 1617 0.86 2.6 2.2 0.8 

272 calculated for both the five month training and five month validation periods. 

The statistical results of both periods can be found in Table 1. 

As expected, we see a slight decrease in performance metrics for the vali-

dation period compared to the training period. The R2 value is slightly lower 

from 0.9 to 0.86, the RMSE and MAE only increased by 0.2 K and 0.4 K, 

respectively. And the bias increased to 0.8 K from 0.3 K. It was thought 

that the increase in bias was due to seasonal dependence, however, reversing 

the training and validation periods did not produce a bias in the negative 

direction - indicating that seasonal dependence is likely not the cause. These 

results demonstrate very good agreement between the training and valida-

tion, as well as the stability of the algorithm over multiple seasons and large 

ranges in temperatures. 

Figure 4 demonstrates the performance of the model for four urban sites 

across the country. The sites were chosen based on their urbanization, which 

is the sum of all four urban categories. The second criteria was based on the 

availability of consecutive clear periods, which we can see as smooth profiles. 

The selected days contain periods of dropped data, both as a result of satellite 

LST product quality filtering and unavailable ground station periods. 

Several observations can be made regarding the diurnal profiles in Figure 
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Figure 4: Diurnal reconstruction of air temperature from LST against ground stations for 

the validation period July - November 2018. Plot a) is from an urban station north east 

of San Francisco. Plot b) is from a Chicago station. Plot c) is from a station southwest of 

Dallas, and plot d) is from a Seattle-area station. 

291 4. First, we can see marginal over-prediction during the daytime and under-

prediction during the nighttime. This is likely due to the imperfect Gaussian 

fit applied to the diurnal profiles. We can also see the over-prediction in the 

average bias calculated in Table 1, which quantified the bias to be about 0.8 

K. 

An example of the scatter for three individual stations against their re-

spective satellite predictions can be seen in Figure 5. The distribution of data 

can be observed as well-fitted to the one-to-one line, and this is true for mul-

tiple stations. There is also little-to-no temperature dependence on accuracy, 

which signifies great linearity between satellite algorithm and ground-truth 
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Figure 5: Scatter and difference plots for ground station and satellite-predicted air tem-

perature for three individual stations in Dallas, TX (top), Elizabeth, NJ (middle), and 

Sacramento, CA (bottom). Each station is at least 70% urban. The scatter shows the 

adherence of the prediction algorithm to the true ground station temperatures. The dis-

tribution shows the distribution of the scatter. 

301 station measurements. This high correlation also alludes to the likelihood 

that extreme heat events can be tracked without decrease in accuracy. 

4.2. Satellite-Derived Air Temperature, Urban Weather Model, and Ground 

Station Comparison 

The urbanized weather research and forecasting model (uWRF) was com-

pared to ground stations in the same method as the GOES-16 satellite-

derived air temperature. The nearest spatial pixel to a given ground sta-
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308 tion was used, and the closest temporal periods were compared (within 30-

minutes). The testing was done from June 14 - Jun 16, 2018 for a test 

period of 72-hours. Six ground stations were selected for comparison in the 

New York City area (three in urban New Jersey and three in the New York 

boroughs). 

The RMSE between the uWRF model and ground stations was found 

to be 1.6 K, while the RMSE between the satellite-derived air temperature 

and ground stations was approximated to be 2.1 K. Therefore, we can infer 

that the model outperforms the algorithm by 0.5 K for the test period and 

limited spatial domain. It should be noted that the uWRF model used here 

has representations for buildings and various urban processes, including heat 

and water vapor exhaust from ventilation systems, which is likely the reason 

for such strong performance. The model has also been specifically tailored 

for the New York City region. Three example stations comparing the air 

temperatures from all three methods (uWRF, satellite, ground station) can 

be seen in Figure 6. 

Both air temperature models carry an inherent bias when compared to 

the ground stations, the uWRF bias is 0.1 K and the GOES-16 bias is 1.2 K. 

We saw the same bias above in the country-wide comparison between satellite 

air temperature and ground station. Another detail to note from Fig. 6 is 

the occurrence of dropped data. The dropped data phenomenon is likely due 

to cloud contamination, which occurs frequently during the summer in New 

York City during and just after peak heating. Therefore, some of the error 

associated with the satellite-derived model can be attributed to interchange 

periods between clear and cloudy skies. 
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Figure 6: uWRF model 2-m air temperature output, GOES-16 air temperature prediction 

using LST, and ASOS ground station air temperature shown for three days in June 2018. 

The gaps in data represent dropped or unavailable data from either the satellite or ground 

station. 

333 In the future, the biases and errors associated with the satellite model may 

be predictable and correctable , perhaps by introducing a higher resolution 

land surface temperature product via downscaling and cloud cover-specific 

prediction algorithms, however, those are tasks to be broached in a future 

work. In the next section, the ground stations will be omitted to facilitate 

a larger spatial correlation between uWRF predictions and satellite-derived 

air temperature can be further analyzed. 

4.3. Spatial Distribution of Air Temperature 

After verifying the correlation between ground stations, uWRF pixels, 

and satellite-derived air temperature, we can investigate the spatial correla-
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343 tion between uWRF and satellite pixels where ground stations do not exist. 

A 81x84 pixel grid resulted in roughly 6,804 pixels available for correlation 

between satellite and uWRF temperatures. This correlation downscales the 

satellite air temperature model from 2-km to 1-km to match the research fore-

casting model. An example snapshot of the difference between the GOES-16 

prediction and the uWRF model can be seen in Figure 7.a. For the test 

period, the RMSE between the two methods was found to be 2.1 K, with the 

satellite-derived air temperature prediction having a bias of 1.1 K. 

The correlation between the two is acceptable, considering there are spa-

tial artifacts that can be observed such as incoming cloud contamination and 

dropped pixels. On very clear days, the RMSE ranges from 1.0 K to 1.5 K 

, indicating an even stronger correlation under ideal conditions. The low 

error between numerical model and LST-derived air temperature suggests 

that the model is portable and reliable for use as a high-resolution, efficient, 

accurate prediction of air temperature in cities across the United States. 

Another example of the model’s ability to recreate spatial maps is given 

in Fig. 7.b, where an independent snapshot was captured for a heat wave in 

New York City on August 28, 2018 during the peak temperature of the day. 

The plot in Figure 7.b shows the ability of the algorithm to capture pockets 

of heat, specifically in the more urban areas of the city. According to the 

LST-derived air temperature reproduction, temperatures in the city reached 

as high as 309 K during the daytime. And upon examination of weather 

records from that day, the maximum air temperature was found to be 308 

K - meaning the algorithm could be used for citing extreme heat events and 

localization of hot spots in urban areas. 
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Figure 7: Plot a) shows a spatial comparison between satellite-predicted air temperature 

and WRF 2-m air temperature in plot. And plot b) shows spatial satellite-derived air 

temperature plot over the New York City area during a heat wave, showing the stability 

of the air temperature algorithm during an extreme heat event. 

368 Something particular to note is that just in the New York area shown in 

Fig. 7 , satellite-derived air temperature variations span up to 14K, which 

likely indicates cloud contamination. This could be an issue during imple-

mentation of the algorithm and may need addressing in the future. For 

daytime peaks during the heat wave, neighboring pixels were observed to 

vary 0.2-0.5K on average, with standard deviations as high as 0.8K, which 

can be interpreted as neighboring pixels that can be as large as 1.3K. These 

variations can have huge implications on urban applications such as energy 

and health. 
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377 5. Discussion 

5.1. Geospatial Inconsistencies 

In Fig. 8, the spatial distribution of error between satellite-derived air 

temperature and ground station air temperature is mapped across the con-

tinental U.S. for each of the 156 urban ASOS stations. After an in-depth 

inspection of the errors, there does not appear to be any strong correlation 

between the input parameters (i.e. latitude, longitude, elevation, land cover) 

and the RMS errors (R2 < 0.1 for each linear fit). 

One weak correlation between error and input parameter is the elevation 

(R2 ≈ 0.08 for the linear fit between elevation and RMS). The scatter is 

large, but an increase in elevation can be observed to weakly increase the 

RMS error. A few publications in the literature state that the coupling 

between air temperature and LST gets weaker at higher elevations (Deng 

et al., 2018; Lin et al., 2016; Pepin et al., 2016), so this is one hypothesis for 

the weak correlation and higher RMS at higher elevations. 

5.2. Comparison with Other Studies 

The difficulty of comparing the current study against others is that no 

other research has developed a country-wide, urban, diurnal, satellite-based 

air temperature model at such a high resolution in space and time. As stated 

in the introduction, many studies have developed daily mean, minimum, and 

maximum air temperature models using satellite data (Cristóbal et al., 2008; 

Good, 2015; Ho et al., 2014; Li et al., 2018a; Shi et al., 2016; Zhu et al., 

2017). 
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400 One such study by (Gholamnia et al., 2017) used a similar method for 

diurnal analysis and focused on the country of Iran. It validated its data 

against the same stations it trained (no independent spatial verification), 

and did not focus on urban areas. And while the average error found in 

that study was 2.1 K, a lower error than our study, it wasn’t tested for 

independence in spatial variability. Another study by (Rhee and Im, 2014) 

conducted in South Korea showed that errors of daily mean temperature were 

still between 2-4 K, which it cited as not much of an improvement compared 

to competing studies. Other larger studies cite similar errors ranging from 

1-4 K, which is in line with this study’s observations (Mildrexler et al., 2011; 

Song and Park, 2014). 

As for urban areas, most studies are concerned with using LST for quan-

tifying urban heat island effects (Agathangelidis et al., 2016), and many 

focus on a single region or city (Nichol et al., 2009; Oswald et al., 2012). 

Moreover, for the studies that do handle LST and air temperature in urban 

areas, their methods are limited to linear relationships that are surely not 

portable between cities (Azevedo et al., 2016; Koenig and Hall, 2010; Shen 

and Leptoukh, 2011). 

Lastly, spatial variability of air temperature is difficult to quantify in ur-

ban areas where heterogeneity dominates. However, it is likely that with the 

aid of ground station networks at higher resolution than the ASOS network, 

the error associated with satellite-derived air temperature will become even 

lower than quantified in this paper. Some studies have already tested var-

ious spatial algorithms, including complicated methods like kriging (Zhang 

et al., 2011b), but they carry errors as large as or larger than this study 
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425 (Monestiez et al., 2001), and typically omit urban-specific sites. 

It is important to note that this is a unique algorithm and methodology 

based on the advantages of the GOES-16 high temporal resolution satellite. 

The algorithm competes with many of the partial studies that have been con-

ducted on similar topics of urban air temperature derivations from satellite 

land surface temperature. It excels due to the temporal information gained 

from the satellite’s resolution, which facilitated country-wide algorithm de-

velopment for approximating the diurnal profile of air temperature in cities. 

The uniqueness and range of the algorithm makes it difficult to directly com-

pare with other studies, however as a broad quantification - the algorithm can 

arguably compete with other studies and algorithms because of its simplicity. 

5.3. Application Potential 

The air temperature model could provide unique solutions for an array 

of problems impacting the urban environment. The air temperature model 

can play a critical role in understanding urban heat island issues. It will be 

able to predict thermal hotspots within cities and coupled to social-economic 

data (O’Neill et al., 2005; Petkova et al., 2016), it can be used to quantify 

social vulnerability of various neighborhoods. The model’s ability to spa-

tially resolve urban air temperature will be beneficial for urban planning and 

understanding intra-city temperature variability. The model can be used to 

forecast spatially resolved heat indices for various cities (Rosenthal et al., 

2014). 

Currently, single point observations and weather forecasts are used to 

predict heat index during extreme heat events. While single point measure-

ments fail to represent spatial variability, modern forecasts from the National 
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Figure 8: Overall error distribution for all 156 stations during the validation period from 

July - November 2018. 

450 Weather Service also lack representation for urban areas. Hence, in the ma-

jority of cases, the urban heat index is mostly under predicted. Our model 

has the potential to create an accurate and cost-effective solution. We are 

currently working on a remote sensing-based model to calculate relative hu-

midity for cities, which will hopefully improve the prediction of heat index 

in cities. 

Another area where the model could be useful is in the field of urban 

energy use, distribution and power generation (Jones et al., 2015). Air tem-

perature is well correlated with energy use and many models exploit this cor-

relation to forecast energy demand that is vital for power generation (Krarti 

et al., 2017). Our model will be able to predict potential spatial variability 
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461 in energy use. By coupling it to a building database, it could also predict 

vulnerable zones within the city. Ultimately the tool can be used to design 

smart distribution systems. The air temperature model can also be used to 

create a high resolution dataset to force urban climate models, which are 

increasingly used to study urban climate dynamics. 

462 

463 

464 

465 

466 6. Conclusion 

This research combined GOES-16 LST with land cover properties, geo-

graphic coordinates, elevation information, and time-of-day to create a ro-

bust Gaussian approximation of 2-m air temperature. The coefficients for 

each satellite pixel were derived using a regressive neural network and com-

parison against true air temperature at ground stations across the U.S. The 

performance of the GOES-16 air temperature model was further validated 

by comparison with a numerical WRF model, indicating agreement and per-

formance between the satellite air temperature model and numerical 2-m air 

temperature. 

The average RMSE between satellite-derived and measured 2-m air tem-

perature was found to be 2.6 K for 156 pixels across 26 different cities in 

the continental United States (see Fig. 8 for the geospatial distribution of 

error). When comparing the algorithm to the numerical model, a RMSE of 

2.1 K was calculated for nearly 7k pixels over a three day period during the 

summer of 2018. For very clear days, the RMSE decreased to as low as 1.0 K, 

indicating a strong correlation and great performance of the satellite-derived 

air temperature against the numerical 2-m air temperature. The algorithm 

shows great promise for improving the current air temperatures in cities, as 
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485 they are often reliant on lower-resolution numerical models or single-point 

observations. This algorithm is the first step toward a possible heat index 

product - a parameter that is essential for marking extreme heat events, 

specifically in urban areas where death tolls can rise beyond the surrounding 

areas. 
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Effects of urbanization on the temperature inversion breakup in a mountain 

valley with implications for air quality. Journal of Applied Meteorology and 

Climatology 53, 840–858. https://doi.org/10.1175/JAMC-D-13-0165. 

1. 

Rhee, J., Im, J., 2014. Estimating high spatial resolution air temperature for 

regions with limited in situ data using MODIS products. Remote Sensing 

6, 7360–7378. http://www.mdpi.com/2072-4292/6/8/7360. 

756 

757 

758 

759 

760 

761 

762 

763 

764 

765 

766 

767 

768 

769 

770 

771 

772 

773 

774 

775 

776 

777 

40 

http://www.mdpi.com/2072-4292/6/8/7360
https://doi.org/10.1175/JAMC-D-13-0165
http://www.sciencedirect
https://sciencedirect.com/science/article/pii/S0034425711003300
http://www


778 Rosenthal, J.K., Kinney, P.L., Metzger, K.B., 2014. Intra-urban vulnerability 

to heat-related mortality in New York City, 1997–2006. Health & Place 

30, 45 – 60. http://www.sciencedirect.com/science/article/pii/ 

S1353829214001087. 

Salamanca, F., Martilli, A., 2009. A new building energy model coupled with 

an urban canopy parameterization for urban climate simulations—part ii. 

validation with one dimension off-line simulations. Theoretical and Applied 

Climatology 99, 345. https://doi.org/10.1007/s00704-009-0143-8. 

Schuch, F., Marpu, P., Masri, D., Afshari, A., 2017. Estimation of urban air 

temperature from a rural station using remotely sensed thermal infrared 

data. Energy Procedia 143, 519 – 525. http://www.sciencedirect.com/ 

science/article/pii/S1876610217364846. leveraging Energy Technolo-

gies and Policy Options for Low Carbon Cities. 

Shen, S., G Leptoukh, G., 2011. Estimation of surface air temperature over 

central and eastern Eurasia from MODIS land surface temperature. En-

vironmental Research Letters 6, 045206. doi:10.1088/1748-9326/6/4/ 

045206. 

Shen, S., Leptoukh, G.G., 2011. Estimation of surface air temperature over 

central and eastern Eurasia from MODIS land surface temperature. En-

vironmental Research Letters 6, 045206. https://doi.org/10.1088% 

2F1748-9326%2F6%2F4%2F045206. 

Shi, L., Liu, P., Kloog, I., Lee, M., Kosheleva, A., Schwartz, J., 2016. Esti-

mating daily air temperature across the southeastern United States using 

779 

780 

781 

782 

783 

784 

785 

786 

787 

788 

789 

790 

791 

792 

793 

794 

795 

796 

797 

798 

799 

800 

41 

https://doi.org/10.1088
http://www.sciencedirect.com
https://doi.org/10.1007/s00704-009-0143-8
http://www.sciencedirect.com/science/article/pii


801 high-resolution satellite data: A statistical modeling study. Environmen-

tal Research 146, 51 – 58. http://www.sciencedirect.com/science/ 

article/pii/S0013935115301663. 

Skamarock, W.C., Coauthors, 2008. A description of the advanced re-

search WRF version 3. Technical Report. NCAR. doi:10.5065/D68S4MVH. 

nCAR/TN-475+STR. 

Song, B., Park, K., 2014. Validation of aster surface temperature data with 

in situ measurements to evaluate heat islands in complex urban areas. 

Advances in Meteorology 2014, 1–12. doi:10.1155/2014/620410. 

Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R., Eklundh, L., 2007. Es-

timation of diurnal air temperature using MSG SEVIRI data in West 

Africa. Remote Sensing of Environment 110, 262 – 274. http://www. 

sciencedirect.com/science/article/pii/S0034425707000995. 

Sun, Y.J., Wang, J.F., Zhang, R.H., Gillies, R.R., Xue, Y., Bo, Y.C., 

2005. Air temperature retrieval from remote sensing data based on ther-

modynamics. Theoretical and Applied Climatology 80, 37–48. https: 

//doi.org/10.1007/s00704-004-0079-y. 

Szymanowski, M., Kryza, M., Spallek, W., 2013. Regression-based air tem-

perature spatial prediction models: an example from Poland. Meteorolo-

gische Zeitschrift 22, 577–585. http://dx.doi.org/10.1127/0941-2948/ 

2013/0440. 

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, 

D., Kalkstein, A.J., Li, F., Chen, H., 2010. The urban heat island 

802 

803 

804 

805 

806 

807 

808 

809 

810 

811 

812 

813 

814 

815 

816 

817 

818 

819 

820 

821 

822 

823 

42 

http://dx.doi.org/10.1127/0941-2948
https://doi.org/10.1007/s00704-004-0079-y
https://sciencedirect.com/science/article/pii/S0034425707000995
http://www
http://www.sciencedirect.com/science


824 and its impact on heat waves and human health in Shanghai. Interna-

tional Journal of Biometeorology 54, 75–84. https://doi.org/10.1007/ 

s00484-009-0256-x. 

Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., Mitchell, K., 

Ek, M., Gayno, G., Wegiel, J., Cuenca, R., 2016. Implementation and 

verification of the united NOAH land surface model in the WRF model, 

in: 20th Conference on Weather Analysis and Forecasting/16th Conference 

on Numerical Weather Prediction, pp. 11–15. 

Tsin, P.K., Knudby, A., Krayenhoff, E.S., Ho, H.C., Brauer, M., Hender-

son, S.B., 2016. Microscale mobile monitoring of urban air temperature. 

Urban Climate 18, 58 – 72. http://www.sciencedirect.com/science/ 

article/pii/S221209551630044X. 

United Nations, 2014. Department of Economic and Social Affairs Popula-

tion Division. World urbanization prospects. https://www.un-ilibrary. 

org/content/publication/527e5125-en. The 2014 Revision, Highlights 

(ST/ESA/SER.A/352). 

Wan, Z., H.S.H.G., 2015. MOD11 L2 MODIS/terra land surface tempera-

ture/emissivity 5-min L2 swath 1km V006 [data set]. https://doi.org/ 

10.5067/MODIS/MOD11_L2.006. NASA EOSDIS LP DAAC. 

Wickham, J., Homer, C., Vogelmann, J., McKerrow, A., Mueler, R., Herold, 

N., Coulston, J., 2014. The multi-resolution land characteristics (MRLC) 

consortium-20 years of development and integration of USA national land 

cover data. Remote Sensing 2014, 6, 7424-7441 6, 7424–7441. 

825 

826 

827 

828 

829 

830 

831 

832 

833 

834 

835 

836 

837 

838 

839 

840 

841 

842 

843 

844 

845 

846 

43 

https://doi.org
https://www.un-ilibrary
http://www.sciencedirect.com/science
https://doi.org/10.1007


847 Yan, H., Fan, S., Guo, C., Hu, J., Dong, L., 2014a. Quantifying the impact of 

land cover composition on intra-urban air temperature variations at a mid-

latitude city. PLOS ONE 9, 1–10. https://doi.org/10.1371/journal. 

pone.0102124. 

Yan, H., Fan, S., Guo, C., Wu, F., Zhang, N., Dong, L., 2014b. Assessing 

the effects of landscape design parameters on intra-urban air tempera-

ture variability: The case of Beijing, China. Building and Environment 

76, 44 – 53. http://www.sciencedirect.com/science/article/pii/ 

S0360132314000596. 

Yu, Y., Liu, Y., Yu, P., Wang, H., 2017. Enterprise algorithm theoretical 

basis document for VIIRS land surface temperature production. https: 

//www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_EPS_Land_ 

LST_v1.0.pdf. NOAA. 

Yu, Y., Yu, P., Rao, Y., 2016. Geostationary operational environmental 

satellite (GOES)-R series advanced baseline imager (ABI) L2+ land sur-

face temperature (LST) beta, provisional, and full validation readiness, 

implementation, and management plan (RIMP). https://www.goes-r. 

gov/products/RIMPs/RIMP_ABI-L2_LST_v.1.0.pdf. NOAA STARR. 

Zhang, D.L., Shou, Y.X., Dickerson, R.R., Chen, F., 2011a. Impact of up-

stream urbanization on the urban heat island effects along the Washington-

Baltimore corridor. Journal of Applied Meteorology and Climatology 50, 

2012–2029. https://doi.org/10.1175/JAMC-D-10-05008.1. 

Zhang, K., Oswald, E.M., Brown, D.G., Brines, S.J., Gronlund, C.J., White-

848 

849 

850 

851 

852 

853 

854 

855 

856 

857 

858 

859 

860 

861 

862 

863 

864 

865 

866 

867 

868 

869 

44 

https://doi.org/10.1175/JAMC-D-10-05008.1
https://www.goes-r
www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_EPS_Land
http://www.sciencedirect.com/science/article/pii
https://doi.org/10.1371/journal


870 Newsome, J.L., Rood, R.B., O’Neill, M.S., 2011b. Geostatistical explo-

ration of spatial variation of summertime temperatures in the Detroit 

metropolitan region. Environmental Research 111, 1046 – 1053. http:// 

www.sciencedirect.com/science/article/pii/S0013935111002118. 

Zhao, L., Lee, X., Smith, R.B., Oleson, K., 2014. Strong contributions of 

local background climate to urban heat islands. Nature 511, 216–219. 

https://doi.org/10.1038/nature13462. 

Zhou, J., Chen, Y., Zhang, X., Zhan, W., 2013. Modelling the diurnal varia-

tions of urban heat islands with multi-source satellite data. International 

Journal of Remote Sensing 34, 7568–7588. https://doi.org/10.1080/ 

01431161.2013.821576. 

Zhu, W., Lu,˝  A., Jia, S., Yan, J., Mahmood, R., 2017. Retrievals of all-

weather daytime air temperature from MODIS products. Remote Sens-

ing of Environment 189, 152 – 163. http://www.sciencedirect.com/ 

science/article/pii/S0034425716304503. 

871 

872 

873 

874 

875 

876 

877 

878 

879 

880 

881 

882 

883 

884 

885 List of Figures 

1 Ground station distribution atop the National Land Cover 

Database (NLCD) in the continental United States. Each 

group of points is centered around an urban area where each 

pointfalls within 50-km of the center of the corresponding city. 

The NLCD land cover classes, ground station elevation and 

latitude and longitude will be used as inputs to the air tem-

perature algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 4 

886 

887 

888 

889 

890 

891 

892 

45 

http://www.sciencedirect.com
https://doi.org/10.1080
https://doi.org/10.1038/nature13462
www.sciencedirect.com/science/article/pii/S0013935111002118


893 2 Hourly-averaged difference between ground station air tem-

perature and the nearest GOES-16 LST pixel. The hourly 

averages have been computed for five months of training data, 

which includes 162 stations across the continental U.S.A. in 

26 cities. The mean absolute error for the averages is 1.65K, 

indicating the lower limit on the possible performance for the 

diurnal model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

3 Flow diagram for calculating air temperature from GOES-

16 land surface temperature (LST) using a diurnal Gaussian 

model and a regressive neural network. . . . . . . . . . . . . . 14 

4 Diurnal reconstruction of air temperature from LST against 

ground stations for the validation period July - November 

2018. Plot a) is from an urban station north east of San Fran-

cisco. Plot b) is from a Chicago station. Plot c) is from a 

station southwest of Dallas, and plot d) is from a Seattle-area 

station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

5 Scatter and difference plots for ground station and satellite-

predicted air temperature for three individual stations in Dal-

las, TX (top), Elizabeth, NJ (middle), and Sacramento, CA 

(bottom). Each station is at least 70% urban. The scatter 

shows the adherence of the prediction algorithm to the true 

ground station temperatures. The distribution shows the dis-

tribution of the scatter. . . . . . . . . . . . . . . . . . . . . . . 18 

894 

895 

896 

897 

898 

899 

900 

901 

902 

903 

904 

905 

906 

907 

908 

909 

910 

911 

912 

913 

914 

915 

46 



916 6 uWRF model 2-m air temperature output, GOES-16 air tem-

perature prediction using LST, and ASOS ground station air 

temperature shown for three days in June 2018. The gaps in 

data represent dropped or unavailable data from either the 

satellite or ground station. . . . . . . . . . . . . . . . . . . . . 20 

7 Plot a) shows a spatial comparison between satellite-predicted 

air temperature and WRF 2-m air temperature in plot. And 

plot b) shows spatial satellite-derived air temperature plot over 

the New York City area during a heat wave, showing the sta-

bility of the air temperature algorithm during an extreme heat 

event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

8 Overall error distribution for all 156 stations during the vali-

dation period from July - November 2018. . . . . . . . . . . . 26 

917 

918 

919 

920 

921 

922 

923 

924 

925 

926 

927 

928 

47 


	Urban Air Temperature Model Using GOES-16 LSTand a Diurnal Regressive Neural Network Algorithm
	Introduction and Background
	Data
	Algorithms and Data Training
	Results
	Discussion
	Conclusion
	Acknowledgements
	References



